
Linear-time Sorting

Review

• We have now introduced several algorithms that can sort n numbers

in O(nlogn) time.

– Merge sort and heapsort achieve this upper bound in the worst

case;

– Quicksort achieves it on average.

– Moreover, for each of these algorithms, we can produce a

sequence of n input numbers that causes the algorithm to run in

Ω(𝑛𝑙𝑜𝑔𝑛) time.

• we showed that Ω(𝑛𝑙𝑜𝑔𝑛) time is necessary, in the worst case,

to sort an n-element sequence with a comparison-based sorting

algorithm.

Bucket Sort & Radix Sort 2

Linear-time Sorting

(integer sort)

To achieve linear-time sorting of n elements:

• Assume keys are integers in the range [0, N-1]

• We can use other operations instead of comparisons.

• We can sort in linear time when N is small enough.

Bucket Sort & Radix Sort 3

Counting sort

Bucket Sort & Radix Sort 4

• Counting sort assumes that each of the n input elements is an integer in

the range 0 to k, for some integer k. When k = O(n), the sort runs in O(n)

time.

• we assume that the input is an array A[1..n], and the array B[1..n] holds

the sorted output, and the array C[1..k] provides temporary working

storage.

Counting sort-Run Time

Bucket Sort & Radix Sort 5

:

Example

Bucket Sort & Radix Sort 6

Exercises

• Using the example on slide 6 as a model, illustrate the operation of

COUNTING-SORT on the array A={6, 0, 2, 0, 1, 3, 4, 6, 1, 3, 2}

• Describe an algorithm that, given n integers in the range 0 to k,

preprocesses its input and then answers any query about how many

of the n integers fall into a range [a .. B] in O(1) time. Your

algorithm should use O(n+k) preprocessing time.

Bucket Sort & Radix Sort 7

Lexicographic Order

• A d-tuple is a sequence of d keys (k1, k2, …, kd), where key ki is said

to be the i-th dimension of the tuple

• The lexicographic order of two d-tuples is recursively defined as

follows

(x1, x2, …, xd) < (y1, y2, …, yd)

(x1 < y1) (x1 = y1 (x2, …, xd) < (y2, …, yd))

that is, tuples are compared by the first dimension, then by the

second, etc.

Bucket Sort & Radix Sort 8

Lexicographic-Sort
Let stableSort(S, C) be a stable sorting
algorithm that uses comparator C

• Ci is the comparator that compares
two tuples by their i-th dimension

Lexicographic-sort sorts a sequence of
d-tuples in lexicographic order by
executing d times algorithm stableSort,
(one per dimension)

• runs in O(dT(n)) time, where T(n)
is the running time of stableSort

Bucket Sort & Radix Sort 9

Algorithm lexicographicSort(S)

Input sequence S of d-tuples
Output sequence S sorted in

lexicographic order

for i d downto 1

stableSort(S, Ci)

Example:

(7,4,6) (5,1,5) (2,4,6) (2,1,4) (3,2,4)

(2,1,4) (3,2,4) (5,1,5) (7,4,6) (2,4,6)

(2,1,4) (5,1,5) (3,2,4) (7,4,6) (2,4,6)

(2,1,4) (2,4,6) (3,2,4) (5,1,5) (7,4,6)

Radix Sort

• A specialization of lexicographic-sort that uses count-sort as the

stable sorting algorithm in each dimension

• Radix-sort is applicable to tuples where the keys in each dimension

are integers in the range [0, N - 1]

• Radix-sort runs in time O(d(n + N))

Bucket Sort & Radix Sort 10

Algorithm radixSort(S, N)

Input sequence S of d-tuples such that (0, …, 0) (x1, …, xd) and
(x1, …, xd) (N - 1, …, N 1) for each tuple (x1, …, xd) in S

Output sequence S sorted in lexicographic order

for i d downto 1

CountSort(S, N)

Radix Sort for Binary Numbers
• Consider a sequence of n b-bit integers

x = xb - 1 … x1x0

• We represent each element as a b-tuple of integers in the range [0, 1]
and apply radix-sort with N = 2

• This application of the radix-sort algorithm runs in O(bn) time

• For example, we can sort a sequence of 32-bit integers in linear time

Bucket Sort & Radix Sort 11

Algorithm binaryRadixSort(S)

Input sequence S of b-bit integers
Output sequence S sorted

replace each element x of S with the item (0, x)

for i 0 to b - 1

replace the key k of
each item (k, x) of S with bit xi of x

CountSort(S, 2)

Example

Bucket Sort & Radix Sort 12

1001

0010

1101

0001

1110

0010

1110

1001

1101

0001

1001

1101

0001

0010

1110

1001

0001

0010

1101

1110

0001

0010

1001

1101

1110

Use radix sort to sort sequence of 4-bit integers

A

B

C

D

E

B

E

A

C

D

A

C

D

B

E

A

D

B

C

E

D

B

A

C

E

Exercises

Bucket Sort & Radix Sort 13

--

Bucket Sort
• Counting sort assumes that the input consists of integers in a small

range,

• bucket sort assumes that the input is generated by a random process
that distributes elements uniformly and independently over the
interval [0,1).

• Bucket sort divides the interval [0,1) into n equal-sized subintervals,
or buckets, and then distributes the n input numbers into the
buckets.

• To produce the output, we simply sort the numbers in each bucket
and then go through the buckets in order, listing the elements in
each.

• The worst-case running time for bucket sort is 𝑂(𝑛2) if we like
insertion sort or it will be 𝑂(𝑛𝑙𝑜𝑛𝑔) if we use merge sort.

Bucket Sort & Radix Sort 14

Bucket Sort

• With the bucket sort, we assumes that the input is an n-element array

A and that each element A[i] in the array satisfies 0 ≤ 𝐴[𝑖] < 1.

• There is an auxiliary array B[1 .. n-1] of linked lists (buckets) and

assumes that there is a mechanism for maintaining such lists.

Bucket Sort & Radix Sort 15

Example

Bucket Sort & Radix Sort 16

