
Linear-time Sorting



Review

• We have now introduced several algorithms that can sort n numbers 

in O(nlogn) time. 

– Merge sort and heapsort achieve this upper bound in the worst 

case; 

– Quicksort achieves it on average. 

– Moreover, for each of these algorithms, we can produce a 

sequence of n input numbers that causes the algorithm to run in 

Ω(𝑛𝑙𝑜𝑔𝑛) time.

• we showed that Ω(𝑛𝑙𝑜𝑔𝑛) time is necessary, in the worst case, 

to sort an n-element sequence with a comparison-based sorting 

algorithm.
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Linear-time Sorting

(integer sort)

To achieve linear-time sorting of n elements:

• Assume keys are integers in the range [0, N-1]

• We can use other operations instead of comparisons.

• We can sort in linear time when N is small enough.
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Counting sort
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• Counting sort assumes that each of the n input elements is an integer in 

the range 0 to k, for some integer k. When k = O(n), the sort runs in O(n) 

time.

• we assume that the input is an array A[1..n], and the array B[1..n] holds 

the sorted output, and the array C[1..k] provides temporary working 

storage.



Counting sort-Run Time
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:



Example
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Exercises

• Using the example on slide 6 as a model, illustrate the operation of 

COUNTING-SORT on the array A={6, 0, 2, 0, 1, 3, 4, 6, 1, 3, 2}

• Describe an algorithm that, given n integers in the range 0 to k, 

preprocesses its input and then answers any query about how many 

of the n integers fall into a range [a .. B] in O(1) time. Your 

algorithm should use O(n+k) preprocessing time.
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Lexicographic Order

• A d-tuple is a sequence of d keys (k1, k2, …, kd), where key ki is said 

to be the i-th dimension of the tuple

• The lexicographic order of two d-tuples is recursively defined as 

follows

(x1, x2, …, xd) < (y1, y2, …, yd)



(x1 < y1)  ( x1 = y1  (x2, …, xd) < (y2, …, yd) )

that is, tuples are compared by the first dimension, then by the 

second, etc.
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Lexicographic-Sort
Let stableSort(S, C) be a stable sorting 
algorithm that uses comparator C

• Ci is the comparator that compares 
two tuples by their i-th dimension

Lexicographic-sort sorts a sequence of 
d-tuples in lexicographic order by 
executing d times algorithm stableSort, 
(one per dimension)

• runs in O(dT(n)) time, where T(n)
is the running time of stableSort
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Algorithm lexicographicSort(S)

Input sequence S of  d-tuples
Output sequence S sorted in

lexicographic order

for i  d downto 1

stableSort(S, Ci)

Example:

(7,4,6) (5,1,5) (2,4,6) (2,1,4) (3,2,4)

(2,1,4) (3,2,4) (5,1,5) (7,4,6) (2,4,6)

(2,1,4) (5,1,5) (3,2,4) (7,4,6) (2,4,6)

(2,1,4) (2,4,6) (3,2,4) (5,1,5) (7,4,6)



Radix Sort

• A specialization of lexicographic-sort that uses count-sort as the 

stable sorting algorithm in each dimension

• Radix-sort is applicable to tuples where the keys in each dimension 

are integers in the range [0, N - 1]

• Radix-sort runs in time O(d(n + N))
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Algorithm radixSort(S, N)

Input sequence S of  d-tuples such that (0, …, 0)  (x1, …, xd) and
(x1, …, xd)  (N - 1, …, N  1) for each tuple (x1, …, xd) in S

Output sequence S sorted in lexicographic order

for i  d downto 1

CountSort(S, N)



Radix Sort for Binary Numbers
• Consider a sequence of n b-bit integers 

x = xb - 1 … x1x0

• We represent each element as a b-tuple of integers in the range [0, 1]
and apply radix-sort with N = 2

• This application of the radix-sort algorithm runs in O(bn) time 

• For example, we can sort a sequence of 32-bit integers in linear time
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Algorithm binaryRadixSort(S)

Input sequence S of b-bit integers 
Output sequence S sorted

replace each element x of S with the item (0, x)

for i  0 to b - 1

replace the key k of 
each item (k, x) of S with bit xi of x

CountSort(S, 2)



Example
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Exercises

Bucket Sort & Radix Sort 13

------------------------------------------------------------------------------



Bucket Sort
• Counting sort assumes that the input consists of integers in a small 

range, 

• bucket sort assumes that the input is generated by a random process 
that distributes elements uniformly and independently over the 
interval [0,1).

• Bucket sort divides the interval [0,1) into n equal-sized subintervals, 
or buckets, and then distributes the n input numbers into the 
buckets.

• To produce the output, we simply sort the numbers in each bucket 
and then go through the buckets in order, listing the elements in 
each.

• The worst-case running time for bucket sort is 𝑂(𝑛2) if we like 
insertion sort or it will be 𝑂(𝑛𝑙𝑜𝑛𝑔) if we use merge sort.
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Bucket Sort

• With the bucket sort, we assumes that the input is an n-element array 

A and that each element A[i] in the array satisfies 0 ≤ 𝐴[𝑖] < 1.

• There is an auxiliary array B[1 .. n-1]  of linked lists (buckets) and 

assumes that there is a mechanism for maintaining such lists. 
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Example
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